skip to main content


Search for: All records

Creators/Authors contains: "Xiao, Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This study aims to explore whether and how positive and negative supercoiling contribute to the three-dimensional (3D) organization of the bacterial genome. We used recently published Escherichia coli GapR ChIP-seq and TopoI ChIP-seq (also called EcTopoI-seq) data, which marks positive and negative supercoiling sites, respectively, to study how supercoiling correlates with the spatial contact maps obtained from chromosome conformation capture sequencing (Hi-C and 5C). We find that supercoiled chromosomal loci have overall higher Hi-C contact frequencies than sites that are not supercoiled. Surprisingly, positive supercoiling corresponds to higher spatial contact than negative supercoiling. Additionally, positive, but not negative, supercoiling could be identified from Hi-C data with high accuracy. We further find that the majority of positive and negative supercoils coincide with highly active transcription units, with a minor group likely associated with replication and other genomic processes. Our results show that both positive and negative supercoiling enhance spatial contact, with positive supercoiling playing a larger role in bringing genomic loci closer in space. Based on our results, we propose new physical models of how the E. coli chromosome is organized by positive and negative supercoils.

     
    more » « less
  2. Abstract Background

    A cell exhibits a variety of responses to internal and external cues. These responses are possible, in part, due to the presence of an elaborate gene regulatory network (GRN) in every single cell. In the past 20 years, many groups worked on reconstructing the topological structure of GRNs from large-scale gene expression data using a variety of inference algorithms. Insights gained about participating players in GRNs may ultimately lead to therapeutic benefits. Mutual information (MI) is a widely used metric within this inference/reconstruction pipeline as it can detect any correlation (linear and non-linear) between any number of variables (n-dimensions). However, the use of MI with continuous data (for example, normalized fluorescence intensity measurement of gene expression levels) is sensitive to data size, correlation strength and underlying distributions, and often requires laborious and, at times, ad hoc optimization.

    Results

    In this work, we first show that estimating MI of a bi- and tri-variate Gaussian distribution usingk-nearest neighbor (kNN) MI estimation results in significant error reduction as compared to commonly used methods based on fixed binning. Second, we demonstrate that implementing the MI-based kNN Kraskov–Stoögbauer–Grassberger (KSG) algorithm leads to a significant improvement in GRN reconstruction for popular inference algorithms, such as Context Likelihood of Relatedness (CLR). Finally, through extensive in-silico benchmarking we show that a new inference algorithm CMIA (Conditional Mutual Information Augmentation), inspired by CLR, in combination with the KSG-MI estimator, outperforms commonly used methods.

    Conclusions

    Using three canonical datasets containing 15 synthetic networks, the newly developed method for GRN reconstruction—which combines CMIA, and the KSG-MI estimator—achieves an improvement of 20–35% in precision-recall measures over the current gold standard in the field. This new method will enable researchers to discover new gene interactions or better choose gene candidates for experimental validations.

     
    more » « less
  3. Zang, Chongzhi (Ed.)
    In Escherichia coli , translocation of RNA polymerase (RNAP) during transcription introduces supercoiling to DNA, which influences the initiation and elongation behaviors of RNAP. To quantify the role of supercoiling in transcription regulation, we developed a spatially resolved supercoiling model of transcription. The integrated model describes how RNAP activity feeds back with the local DNA supercoiling and how this mechanochemical feedback controls transcription, subject to topoisomerase activities and stochastic topological domain formation. This model establishes that transcription-induced supercoiling mediates the cooperation of co-transcribing RNAP molecules in highly expressed genes, and this cooperation is achieved under moderate supercoiling diffusion and high topoisomerase unbinding rates. It predicts that a topological domain could serve as a transcription regulator, generating substantial transcriptional noise. It also shows the relative orientation of two closely arranged genes plays an important role in regulating their transcription. The model provides a quantitative platform for investigating how genome organization impacts transcription. 
    more » « less
  4. Abstract Why do some biological systems and communities persist while others fail? Robustness, a system's stability, and resilience, the ability to return to a stable state, are key concepts that span multiple disciplines within and outside the biological sciences. Discovering and applying common rules that govern the robustness and resilience of biological systems is a critical step toward creating solutions for species survival in the face of climate change, as well as the for the ever-increasing need for food, health, and energy for human populations. We propose that network theory provides a framework for universal scalable mathematical models to describe robustness and resilience and the relationship between them, and hypothesize that resilience at lower organization levels contribute to robust systems. Insightful models of biological systems can be generated by quantifying the mechanisms of redundancy, diversity, and connectivity of networks, from biochemical processes to ecosystems. These models provide pathways towards understanding how evolvability can both contribute to and result from robustness and resilience under dynamic conditions. We now have an abundance of data from model and non-model systems and the technological and computational advances for studying complex systems. Several conceptual and policy advances will allow the research community to elucidate the rules of robustness and resilience. Conceptually, a common language and data structure that can be applied across levels of biological organization needs to be developed. Policy advances such as cross-disciplinary funding mechanisms, access to affordable computational capacity, and the integration of network theory and computer science within the standard biological science curriculum will provide the needed research environments. This new understanding of biological systems will allow us to derive ever more useful forecasts of biological behaviors and revolutionize the engineering of biological systems that can survive changing environments or disease, navigate the deepest oceans, or sustain life throughout the solar system. 
    more » « less
  5. null (Ed.)
  6. Abstract

    The FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ’s treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme’s diffusion and FtsZ’s treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.

     
    more » « less